Neutral networks, quantum chaos and Sachdev-Ye-Kitaev models

admin   2019-07-04 04:38:32   5653

报告题目:Neutral networks, quantum chaos and Sachdev-Ye-Kitaev models
报告时间:2019-07-10 15:30 (星期三)
报告人:叶锦武教授(首都师范大学和Mississippi State university)


Wewill first review the recent progress in SYK models and their global impacts inquantum gravity, QCD, condensed matter physics, quantum information science anddeep machine learning. Then we will outline the results achieved in our recentworks in [1-5]. This colloquium is pedagogical, so should be accessible to anygraduate students who are interested in working on this still rapidly expandingdirection and other related directions such as many body localization (MBL),eigenstate thermalization hypothesis (ETH), Neural networks / Deep Machinelearning, Complexity, etc.   




(1) Novel Quantum, topological Phases, phase transitions driven byinteractions in various spin-orbit coupled systems. 

(2) quantum chaos andquantum information scramblings in cavity QED systems or in Sachdev-Ye-Kitaevmodels.   


1.   Jinwu Ye, Two indices  Sachdev-Ye-Kitaevmodel,  ArXiv:1809.0667,substantially revised version 2 to be put on ArXiv soon   

2.   Fadi Sun, Yu Yi-Xiang, Jinwu Ye and WuMingLiu, A new universal ratio in Random Matrix Theory and  Random matrices and quantum analog ofKolmogorov-Arnold-Moser (KAM) theorem in hybrid Type-I and Type-IISachdev-Ye-Kitaev models,  ArXiv:1809.07577.   

3.  Fadi Sun, Yu Yi-Xiang, Jinwu Ye and WuMingLiu,  Classifications of quantum chaos incolored Sachdev-Ye-Kitaev models, arXiv:1903.02213.   

4.  Fadi Sun and Jinwu Ye, Periodic Table of SYKand supersymmetric SYK , arXiv:1905.07694   

5.  Yu Yi-Xiang, Jinwu Ye and CunLin Zhang,  Photon Berry phases, Instantons, Quantumchaos and quantum analog of Kolmogorov-Arnold-Moser (KAM) theorem in the $U(1)/Z_2 $ Dicke models, arXiv:1903.02947


地址:long8唯一官方网站北洋园校区32教学楼B区 | 邮编:300350Designed by 2014级long8唯一本科生蒋啸寒
Copyright © 2022 long8唯一官方网站. All rights reserved. | Designed by 2014级long8唯一本科生蒋啸寒